Code: 20CS4501D

III B.Tech - I Semester – Regular / Supplementary Examinations NOVEMBER 2024

ARTIFICIAL INTELLIGENCE (COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks		
UNIT-I							
1	a)	Explain the working principle of an artificial intelligence enabled machine with a schematic diagram.	L2	CO1	7 M		
	b)	Explain PEAS parameters of an autonomous driving car.	L2	CO1	7 M		
OR							
2	a)	Sketch the structure of a learning agent with a neat diagram.	L2	CO1	7 M		
	b)	Explain the properties of the environment for a medical diagnosis system.	L2	CO1	7 M		
UNIT-II							
3	a)	Identify the search space for an agent to solve N-queen problem using uninformed search technique.	L3	CO2	7 M		

Max. Marks: 70

	b)	Demonstrate years solution model using				
	b)	Demonstrate your solution model using	L3 CO2 7 N			
		breadth first search technique.				
T		OR	1			
4	a)	Explain the structure of a constraint				
		satisfaction problem. Illustrate with a suitable	L2	CO1	7 M	
		example.				
	b)	Describe the use of alpha beta pruning.	L2	CO1	7 M	
		Explain with a suitable example.		COI	/ 111	
		UNIT-III	1			
5	a)	Define conjunctive normal form. Explain the				
		steps to convert any composite sentence to	L2	CO1	7 M	
		conjunctive normal form.				
	b)	Do you think all the sentences of knowledge				
		base can be represented using propositional	L3	CO2	7 M	
		logic? Justify your answer.				
		OR				
6	a)	Prove or disprove the following statement				
		with associated rules.	L3	CO2	6 M	
		$A \Leftrightarrow B \models \neg A \lor B.$				
	b)	Prove or disprove the following statement				
		with associated rules.		GO0		
		$ (A \lor B) \land (\neg C \lor \neg D \lor E) = (A \lor B \lor C) \land$	L3	CO2	8 M	
		$(B \land C \land D \Rightarrow E).$				
			1	<u> </u>		
		UNIT-IV				
7	a)	Distinguish the differences and similarities	ΤΛ		7 M	
	between problem solving and planning.					
	b)	Explain hierarchical planning.	L2	CO3	7 M	
·						

				OR					
8	a)	Explain	the Wumpus	world prol	olem.		L2	CO3	7 M
	b)	Demon	strate planni	ng with	proposi	itional			
			o find the so	U	• •		L4	CO4	7 M
		U	oroblem.			L			
				UNIT-V					
9	a)	a) Describe different phases of reinforcement						CO1	7 M
		learning	g agents.				L2		/ 1 V1
	b)	Demon	strate logical	formulatio	n of lea	arning	т 4	CO^{4}	7 \ 1
		with a s	suitable examp	ole.			L4	CO4	7 M
	1			OR			<u>ı</u>		1
10	Con	sider the	knowledgebas	e for a stud	lent will	l play			
		or not as	-			- •			
			Γ	TT • 1• /	****				
	SL	Outlook	Temperature	Humidity	Windy	Play Golf			
	0	Rainy	Hot	High	False	No			
	1	Rainy	Hot	High	True	No			
	2	Overcast	Hot	High	False	Yes			
	3	Sunny	Mild	High	False	Yes			
	4	Sunny	Cool	Normal	False	Yes	L3	CO3	14 M
	5	Sunny	Cool	Normal	True	No			TITT
	6	Overcast	Cool	Normal	True	Yes			
	7	Rainy	Mild	High	False	No			
	8	Rainy	Cool	Normal	False	Yes			
	9	Sunny	Mild	Normal	False	Yes			
	10	Rainy	Mild	Normal	True	Yes			
	11	Overcast	Mild	High	True	Yes			
	12	Overcast	Hot	Normal	False	Yes			
	13	Sunny	Mild	High	True	No			

Design a probabilistic model to learn whether a		
student will play in a particular new environment or		
not. Predict the student will play or not given that		
Outlook = Rainy, Temperature = Hot, Humidity =		
High, and Windy = False.		